Tricyclic graph with maximal Estrada index

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tricyclic graph with maximal Estrada index

Let G be a simple connected graph on n vertices and λ1, λ2, . . . , λn be the eigenvalues of the adjacency matrix of G. The Estrada index of G is defined as EE(G) = n i=1 e λi . LetTn be the class of tricyclic graphs G on n vertices. In this paper, the graphs inTn with themaximal Estrada index is characterized. © 2013 Elsevier B.V. All rights reserved.

متن کامل

Alkanes with Greatest Estrada Index

Several hundreds of so-called molecular structuredescriptors were proposed in the chemical literature [1] and are used for modeling of various physical and chemical properties of (mainly) organicmolecules. In general, a molecular structure-descriptor is a number, usually computed from the molecular graph [2, 3], that reflects certain topological features [4, 5] of the underlying molecule. Many ...

متن کامل

On the Laplacian Estrada Index of a Graph

Let G = (V,E) be a graph without loops and multiple edges. Let n and m be the number of vertices and edges of G, respectively. Such a graph will be referred to as an (n,m)-graph. For v ∈ V (G), let d(v) be the degree of v. In this paper, we are concerned only with undirected simple graphs (loops and multiple edges are not allowed). Let G be a graph with n vertices and the adjacency matrix A(G)....

متن کامل

Lower Bounds for Estrada Index

If G is an (n,m)-graph whose spectrum consists of the numbers λ1, λ2, . . . , λn, then its Estrada index is EE(G) = ∑n i=1 e λi . We establish lower bounds for EE(G) in terms of n and m. Introduction In this paper we are concerned with simple graphs, that have no loops and no multiple or directed edges. Let G be such a graph, and let n and m be the number of its vertices and edges. Then we say ...

متن کامل

Estrada Index of Benzenoid Hydrocarbons

A structure-descriptor EE, recently proposed by Estrada, is examined. If λ1, λ2, . . . ,λn are the eigenvalues of the molecular graph, then EE = n ∑ i=1 eλi . In the case of benzenoid hydrocarbons with n carbon atoms and m carbon-carbon bonds, EE is found to be accurately approximated by means of the formula a1 n cosh (√ 2m/n ) +a2, where a1 ≈ 1.098 and a2 =−0.64 are empirically determined fitt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2014

ISSN: 0166-218X

DOI: 10.1016/j.dam.2013.08.045